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A recent numerical work [P. Hennequin, M. A. Dubois, and R. Nakach, Phys. Lett. A 164, 259 (1992)]
analyzed the effect of the separatrix shape on stochasticity onset in a two-wave Hamiltonian system and
stated in particular a very unexpected result: it linked a lowering of the stochasticity threshold to the
flattening of a “‘separatrix angle” and to the bifurcation of the associated saddle point. In this paper, we
show that there is no simple dependence of this threshold on a given control parameter of the separatrix

shape.

PACS number(s): 05.45.+b, 03.20.+i

L. INTRODUCTION

Recently, in a numerical work the effect of the separa-
trix shape on the stochasticity onset in a two-wave Ham-
iltonian system was analyzed. In particular, the depen-
dence of the stochasticity threshold on the “separatrix
angle” at the hyperbolic fixed point was studied [1]. The
conclusion of that work was that the flattening of the an-
gle has a very significant effect on the reduction of the
stochasticity threshold, i.e., that a change in the nature of
fixed points or simple periodic orbits significantly affects
chaotic transport. Using this result, the authors pro-
posed a scenario for the unsolved problem of internal dis-
ruptions in tokamaks [2], wherein they related the catas-
trophic behavior observed during those disruptions to the
flattening of the separatrix angle at the hyperbolic fixed
point.

In the present paper we use the same Hamiltonian in-
troduced by the previous authors as an example to
demonstrate that (i) the stochasticity threshold is in-
dependent of the value of the separatrix angle at the hy-
perbolic point, and (ii) there is no simple dependence of
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this threshold on any given parameter controlling the
separatrix shape, such as the flatness of this separatrix at
the elliptic fixed point or the number of its ripples.

II. STUDY OF THE MODEL HAMILTONIAN FAMILY
Following Ref. [1], we consider the Hamiltonian
H(x,v,t)=v72+E1V(x +8)+E,V(ix —t) (1)
with potential

V(g)=cos q—% sin(mgq) (2)

and (x,0,1)ES; XRXS; (S; is the circle). This four-
parameter family of models describes for instance the
motion of a charged particle in the potential of two elec-
trostatic waves, traveling at velocities =1; the wave am-
plitudes are E; =0 and E, =0; the parameters c €ER and
m EN, control the shape of the waves. Figure 1(a)
displays the potential ¥V for some values of a and m; for
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a=1, the unstable equilibrium at g =0 is degenerate. Up
to a linear change of variables, the model [(1) and (2)] in-
clude the two-wave paradigm Hamiltonian of Escande
and Doveil [3] in two ways: (i) for =0, regardless of m;
(ii) in the limit m — o, regardless of a (however, the vec-
tor field, i.e., the dynamics, generated by H is not defined
in this limit).

A. One-wave Hamiltonian

For E,=0 (E,=0), the Hamiltonian (1) is integrable
and describes the motion of a charged particle in the po-
tential of a single modulated wave with velocity +1
(—1). A Galilean transformation reduces (1) and (2) to

2
Hl(q,p,t)=%-—+E cos ) 3)

—2 sin(mq)
q m q

For a =0, it admits at least two fixed points; their stabili-
ty does not depend on m: -

(i) (,0) has eigenvalues *i(1+a)V E; it is elliptic.

(i) (0,0) has eigenvalues +|1—a|V'E; it is hyperbolic
for a1 and parabolic for a=1; at a=1, it undergoes a
degenerate bifurcation giving rise to two elliptic points
(£(1/m)V2(1—1/a)+ - --,0) and two saddle points
(£(1/m)V6(l—1/a)+ ---,0).

Regardless of the values of a and m, the single-wave
Hamiltonian shows that the particle is trapped for energy

FIG. 1. (a) Potential for a=0 (dots); a=1, m =1 (dashes);
and a=1, m =3 (solid line). (b) Phase portrait of the integrable
single-wave Hamiltonian for a=1, m =3, E =1. Dotted lines
show the separatrix for a=0.
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FIG. 2. 5000 points of a trajectory for m =3, a=1,s =0.72.

values —E < H < E and untrapped (circulating) for ener-
gy values H > E; at separatrix energy H =E, its maximal
velocity is 2V E. The phase portrait of H, [see Fig. 1(b)
for a=1, m =3] shows a single (or triple if a> 1) reso-
nance with a half width of 2V'E. The parameter a con-
trols the angle y between the stable and unstable direc-
tions at the hyperbolic point (tany=|1—a/|) and m con-
trols the ripples of the potential and the separatrix.

The fixed points of H, correspond to periodic trajec-
tories of H. However, the phase portrait of H, also gives
the stroboscopic Poincaré section of the flow of H at
times t =0 (mod27), with p=v —1,g=x —1.

B. Two-wave phase portrait

For E, >0 and E, >0, the model (1) is not integrable.
We discuss only the case E;=E,=E >0 and define the
resonance overlap parameter s =2V E. For 0<s <<1,
the phase portrait of H shows stochastic domains
separated by KAM tori; the main stochastic regions ap-
pear in the vicinity of the homoclinic trellises originating
from the separatrixes of the two main resonances, associ-
ated with the hyperbolic periodic orbits (0, £1+O(s)).
For increasing s, the model undergoes a transition to
large-scale chaos at a value s*(a,m) for which the two
main stochastic seas merge. Figure 2 displays one trajec-
tory for m =3, a=1, s =0.72<s5*(1.0,3) to illustrate the
effect of the potential modulation on the shape of invari-
ant islands and tori.

The symmetries of the model [(1) and (2)] for E,=E,
provide us with a simple criterion to estimate s*. Since
the Hamiltonian is even with respect to each phase-space
variable x, v, and ¢ and since the Poincaré section is per-
formed at ¢ =0, we note that if v =(x) is the equation of
an invariant torus in this section, then v = —1(x) is the
equation of a symmetric torus. Thus the boundary of the
upper main stochastic sea intersects the axis v =0 if and
only if s >s*(a,m).

We estimate s* numerically as follows. Given a, m,
and s, we choose 40 initial data at random in a rectangle
[0.0,0.3]1X[0.7,0.9] at t =0; we compute their trajec-
tories (using a leapfrog integrator with 400 steps per
Poincaré period to allow for m <10) over 10* Poincaré
periods; if at least one trajectory reaches a value v <0 in
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FIG. 3. Numerical estimate of large-scale stochasticity
threshold sy vs a for 1 <m <7 and m =10.

the Poincaré section, then s >s*(a,m ).

Figure 3 displays the estimate threshold sy (a,m ), such
that no trajectory reaches v <0 if s <sy(a,m)—1072
and at least one does for s =sy(a,m). All lines start at
a=0 from the paradigm Hamiltonian’s value s*=0.69,
but they behave quite differently for increasing a:

(i) For m =1, in agreement with observations in Ref.
[1], sy decreases monotonically to 0.55 at a=1.

(ii) For m =2, sy decreases only to 0.64.

(iii) For m =3, sy increases to 0.78 at a=0.8 and is
still 0.73>0.69 at a=1.

(iv) For m >4, sy remains close to 0.69 (as one would
expect for m — ), but shows no simple dependence on
(a,m).

Thus neither a nor m controls the large-scale stochastici-
ty threshold s *(a,m ) in a straightforward way.

We can also estimate analytically the large-scale sto-
chasticity threshold using the renormalization technique
of Ref. [4]. By definition,

s*(a,m)= sup s, (o;a,m), 4)
—l<w<1

where s 4 (w;a,m) is the value of s for which the invariant
torus T, with average phase velocity w gets broken. To
estimate s 4, (w;a,m ), one performs a Kolmogorov change
of variables to rewrite the dynamics generated by
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H(x,v,t) in the vicinity of T, in the form of the dynam-
ics generated by the paradigm two-wave Hamiltonian
plus a “small” perturbation:
IZ

H(cp,I,t):—2——Mcos<p—Pcos(¢>—t) , (5)
where M and P depend on (w,a,m,s). In particular, for
o=(V'5—1)/2, a=1, m =1, the large-scale stochasticity
threshold is estimated as s , =0.59, in reasonable agree-
ment with numerical observation.

III. CONCLUSION AND COMMENTS

It would have been nice to relate, even roughly, the
large-scale stochasticity threshold in two-wave models,
measured by a critical resonance overlap parameter s* or
by a critical wave amplitude E*=s*2/4, to a “single-
wave” quantity, such as the flatness parameter a at a hy-
perbolic point. Such a relation would save on long nu-
merical experiments. But, such a connection would be
surprising: the transition to large-scale stochasticity as s
increases is a global bifurcation, involving the destruction
of a whole torus in phase space (a curve in the Poincaré
section), whereas the flatness effect involves only a local
bifurcation, at a fixed point in the Poincaré section.
Moreover, one does not expect even locally strong chaos
to occur near a parabolic point (whose Liapunov ex-
ponents vanish): why then should it favor large-scale
chaos?

To summarize, we have shown that the large-scale sto-
chasticity threshold in a two-wave Hamiltonian system
has no simple dependence on a given control parameter
of the separatrix shape. Therefore any physical theory
relying on such a relationship would be doubtful.
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